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A modelling method for the modal analysis of a rotating composite cantilever plate is
presented in this paper. A set of linear ordinary differential equations of motion for the
plate is derived by using the assumed mode method. Two in-plane stretch variables are
employed and approximated to derive the equations of motion. The equations of motion
include the coupling terms between the in-plane and the lateral motions as well as the
motion-induced stiffness variation terms. Dimensionless parameters are identified and the
explicit mass and the stiffness matrices for the modal analysis are obtained with the
dimensionless parameters. The effects of the dimensionless angular velocity and the fiber
orientation angles of rotating composite cantilever plates on their modal characteristics are
investigated. Natural frequency loci veering and crossing along with associated mode shape
variations are observed.

# 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

Composite structures, especially laminated composite plates, have been widely used in
many engineering examples in aeronautical, astronautical, and marine structures. In
addition to the advantages of high strength (as well as high stiffness) and light weight,
another advantage of the laminated composite plate is the controllability of the structural
properties through changing the fiber orientation angles and the number of plies and
selecting proper composite materials.

While studies on laminated composite structures were actively progressed in the 1980s
(see, for instance references [1–5]), flexible structures having slender shapes were often
idealized as beams. Reliable and robust theories for beams, which can provide accurate
numerical results in most cases, are available. Many structures, however, have plate-like
shapes rather than beam-like shapes. Solar panels and solar sails of satellites, turbine
blades, and aircraft rotary wings which have small aspect ratios are such examples.
Obviously, these structures can be analyzed more accurately by modelling them as plates
22-460X/02/$35.00 # 2002 Elsevier Science Ltd. All rights reserved.
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rather than beams. During the last three decades a few results for rotating cantilever plates
have been presented (see references [6, 7]). These efforts employed finite element
techniques and strain energy expressions which were obtained from equilibrium conditions
between the centrifugal inertia forces and the steady state in-plane stress components. On
the basis of this approach, the modal characteristics of rotating plates could be estimated
by calculating explicit stiffness matrices. This approach, however, involves unnecessary
assumptions and complexities which result in a two-step procedure to derive the equations
of motion for rotating plates. These added complexities make it extremely difficult to
apply this approach to practical problems. In addition, the Coriolis coupling effects
between the in-plane and the lateral motions cannot be considered in this approach.
Recently, a new modelling method, which employs a hybrid set of deformation variables
for a plate, was introduced (see reference [8]). This modelling method is much simpler than
the previous method in deriving the equations of motion and performing the numerical
analysis. Moreover, the Coriolis coupling effects between the in-plane and the lateral
motions can be considered. To date this modelling method has been applied to only
isotropic plates. Here, the method is extended to composite plates. Since composite plates
are used for many rotating structures nowadays, the method and the results obtained
through this study can be used for the designs of the structures.

The purpose of this paper is to investigate the modal characteristics of rotating
composite plates. The equations of motion are derived and transformed into dimensionless
forms. Dimensionless parameters are identified and the effects of the dimensionless
angular speed and the fiber orientation angles on the modal characteristics of rotating
composite plates are investigated. The coupling effects between the in-plane and the
bending motions are examined. In addition, natural frequency loci veering, loci crossing,
and associated mode shape variations are observed and discussed. These have never been
discussed in previous works.

2. EQUATIONS OF MOTION

Figure 1 shows a rotating rectangular plate which is characterized by natural length a;
width b; and thickness h: The thickness of the plate is assumed to be uniform and small
Figure 1. Configuration of a rotating rectangular plate.



Figure 2. Deformation variables for a rectangular plate.
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compared to other dimensions of the plate so that the Kirchhoff hypothesis can be
employed. So the transverse shear and the rotary inertia effects are ignored in this study.
This assumption is made to simplify the formulation in order to focus on the major issue
of the present study, which is the stiffness variation due to the overall motion. The plate is
attached to a rigid hub (of radius R) which rotates with a constant angular speed O:

By the Kirchhoff hypothesis, any straight line segments perpendicular to the mid-plane
of the plate before deformation remain perpendicular to the mid-plane after deformation.
Therefore, any one of them can be used as a rigid reference frame for the plate. In this
study, the straight line segment at a corner of the rectangular plate (where point O is
located) is used as the reference frame as shown in the figure. A unit vector triad ( #aa1; #aa2;
and #aa3) is fixed to the reference frame.

Figure 2 shows the mid-planes of a rectangular plate before and after deformation. The
elastic deformation of a generic point in the mid-plane is denoted as u (the vector from
point P0 to point P shown in the figure). Three Cartesian variables (u1; u2; and u3 as shown
in the figure) are employed to express the elastic deformation vector. Conventionally, the
three Cartesian deformation variables are approximated to obtain ordinary differential
equations of motion. In the present study, however, u1 and u2 are not approximated while
u3 is approximated. Instead, two in-plane stretch variables (s and r shown in the figure) are
approximated. Thus, by using the Rayleigh–Ritz method, they can be expressed as
follows:

sðx; y; tÞ ¼
Xm
j¼1

f1jðx; yÞqjðtÞ; rðx; y; tÞ ¼
Xm
j¼1

f2jðx; yÞqjðtÞ;

u3ðx; y; tÞ ¼
Xm
j¼1

f3jðx; yÞqjðtÞ; ð1; 2; 3Þ

where f1j; f2j; and f3j are spatial mode functions. Any compact set of admissible
functions which satisfy the geometric boundary conditions of the plate can be used as the
mode functions. The qj’s are generalized co-ordinates and m is the total number of the
generalized co-ordinates. For convenience of formalism, s; r; and u3 use the same number
of co-ordinates m: However, they are not actually coupled. For instance, f1j is not zero
only if j4m1; f2j is not zero only if m15j4m1 þ m2; and f3j is not zero only if m1 þ
m25j4m1 þ m2 þ m3: In other words, m1; m2; and m3 denote the actual numbers of
generalized co-ordinates for s; r; and u3 respectively. The scalar m is the total sum of m1; m2;
and m3:
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The elastic strain energy of a composite plate can be expressed as follows (see
reference [9]):

U ¼ 1
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where matrices Aij ; Bij ; and Dij can be obtained by integrating the material properties of
each layer of a composite plate (as shown in Figure 3) as follows:

Aij ¼
Z h=2

�h=2

Q
ðkÞ
ij dz ¼

XN

k¼1

Q
ðkÞ
ij ðzk � zk�1Þ; ð5Þ

Bij ¼
Z h=2

�h=2

Q
ðkÞ
ij z dz ¼ 1

2

XN

k¼1

Q
ðkÞ
ij ðz2k � z2k�1Þ; ð6Þ

Dij ¼
Z h=2

�h=2

Q
ðkÞ
ij z2 dz ¼ 1

3

XN

k¼1

Q
ðkÞ
ij ðz3k � z3k�1Þ; ð7Þ

where Q
ðkÞ
ij are the off-axis stiffness of kth layer, zk and zk�1 are the distance from the mid-

plane to the top and bottom surface of the kth layer, and N is the total number of
laminated layers. The laminated plate geometry and ply numbering system is also shown
in Figure 3 and the co-ordinates and fiber direction of kth-layer angle-ply laminated
composite plate are shown in Figure 4.
Figure 3. Laminated plate geometry and ply numbering system.



Figure 4. Fiber direction of the kth layer.
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By using the strain energies given in equation (4), generalized active forces (see reference [10])
can be obtained as follows:

Fi ¼ �@U

@qi

ði ¼ 1; 2; . . . ; mÞ: ð8Þ

The use of s and r results in the advantage of obtaining the exact quadratic form of in-
plane strain energy. Thus, exact linear generalized active forces can be obtained.
Unfortunately, this complicates the formulation of generalized inertia forces in the
equations of motion. Generalized inertia forces (see reference [10]) can be obtained by
using the following equation:

F �
i ¼ �

Z b

0

Z a

0

r
@mP

@ ’qqi

� �
� aP dx dy ði ¼ 1; 2; . . . ; mÞ; ð9Þ

where r is the mass per unit area of the plate; ’qqi’s are the time derivatives of the
generalized co-ordinates; and vP and aP are the velocity and the acceleration of
the generic point P: The velocity of point P can be obtained from the following
equation:

vP ¼ vO þ xA � ðp� uÞ þA mP; ð10Þ

where vO is the velocity of point O which is the reference point fixed in the rigid frame A;
xA is the angular velocity of the rigid frame A; p is the position vector from O to P0; and
AvP is the relative velocity P observed from the rigid frame A; which can be obtained by
taking the time derivative of u in the rigid frame A: Here component notation, vO; xA; p
and AvP defined by

vO ¼ RO #aa3; xA ¼ �O #aa2; ð11; 12Þ

p ¼ x #aa1 þ y #aa2;
A vP ¼ ’uu1 #aa1 þ ’uu2 #aa2 þ ’uu3 #aa3 ð13; 14Þ

is used. By substituting equations (11)–(14) into Equation (10), the velocity of point P can
be obtained as follows:

vP ¼ ½ ’uu1 � Ou3
 #aa1 þ ½ ’uu2
 #aa2 þ ½ ’uu3 þ OðR þ x þ u1Þ
 #aa3: ð15Þ

Since u1; ’uu1; and ’uu2 shown in equation (15) are not approximated, they need to be
replaced by using s; r; u3; ’ss; ’rr; and ’uu3: The geometric relations between the in-plane
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stretch variables and the Cartesian deformation variables are given (see reference [11]) as
follows:

x þ s ¼
Z x

0

1þ @u1

@x

� �2

þ @u3

@x

� �2
" #1=2

dx; ð16Þ
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Z y

0
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dZ: ð17Þ

Since linear equations of motion are to be derived eventually in the present study,
up to second degree terms are to be retained to avoid premature
linearization (see reference [10]) until the partial velocities are obtained. By using
the binomial expansion theorem, the above two equations can be approximated
as follows:
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Differentiations of equations (18) and (19) with respect to time yield

’ss ¼ ’uu1 þ
Z x

0
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� �
@u3

@x
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dx; ð20Þ
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Z y

0
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� �
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� �� �
dZ: ð21Þ

Thus, ’uu1 and ’uu2 in equation (15) can be replaced by ’ss; ’rr; and ’uu3: By using equations (20)
and (21) along with equations (15) and (1)–(3), the partial derivative of vP with respect to
’qqi can be obtained as follows:

@vP

@ ’qqi

¼ f1i �
Xm
j¼1

Z x

0

f3i;xf3j;x dxqj

" #
#aa1

þ f2i �
Xm
j¼1

Z y

0

f3i;Zf3j;Z dZqj

" #
#aa2 þ ½f3i
 #aa3: ð22Þ

Now, by simply differentiating the velocity shown in equation (15) with respect to time,
the acceleration of point P can be obtained. Then, by substituting the acceleration and the
partial velocities shown in equation (22) into equation (9), the generalized inertia forces
can be obtained. Linearizing the generalized inertia forces and adding them by the
generalized active forces, the linear equations of motion for rotating composite plates can
be obtained. A more detailed procedure to obtain the equations of motion is given in
reference [8].

It is useful to obtain the equations of motion in a dimensionless form. For
the purpose, the following dimensionless variables, parameter, and functions are
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introduced:
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where Or and T are defined as
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ffiffiffiffiffiffiffiffi
D11

ra4

s
; T � 1

Or

: ð24Þ

Using these dimensionless variables and parameters, the following linear dimensionless
equations of motion for composite plate can be eventually derived:Xm

j¼1
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 ¼ 0; ð27Þ



H. H. YOO ET AL.240
where

Mkl
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Z 1
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jkijlj dx dZ; ð28Þ
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where a comma denotes partial differentiation with respect to subscripts that follow. If m

is 1, G represents x and if m is 2, G represents Z:
Using equations (25)–(27), the matrix form of the equations of motion can be derived as

follows:

M .WWþ C ’WWþ KW ¼ 0; ð34Þ

where

M ¼
M11

ij 0 0

0 M2
ij 0

0 0 M33
ij

2
664

3
775; C ¼

0 0 2oM13
ij

0 0 0

�2oM31
ij 0 0

2
64

3
75; ð35; 36Þ

K ¼
K11 K12 K13

K21 K22 K23

K31 K32 K33

2
64

3
75; ð37Þ

where K is the symmetric whose respective element matrices Kij are defined as

K11 ¼ �o2M11 þ KS1 11;11 þ KS2 11;12 þ KS3 11;21 þ KS3 11;22;

K12 ¼ K21 ¼ KS2 12;22 þ KS1 12;12 þ KS3 12;11 þ KS2 12;21; ð38Þ

K13 ¼ K31 ¼ � KC1 1;111 � KC2 1;122 � KC3 1;211 � 2KC3 1;112

� 2KC4 1;222 � 2KC2 1;212; ð39Þ

K22 ¼ KS3 22;22 þ KS2 22;21 þ KS2 22;12 þ KS1 22;11;

K23 ¼ K32 ¼ � KC3 2;211 � KC4 2;222 � KC1 2;111 � KC2 2;122

� 2KC2 2;212 � 2KC3 1;112; ð40Þ
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K33 ¼ � o2M33 þ KB1 11;11 þ KB2 11;12 þ KB2 22;11

þ KB3 22;22 þ 2KB4 11;12 þ 2KB4 12;11 þ 2KB5 22;12

þ 2KB5 12;22 þ 4KB2 12;12 þ so2KGX1 þ o2KGX2: ð41Þ
In order to use a complex modal analysis method, equation (34) is transformed into the

following form:

M� ’ZZþ K�Z ¼ 0; ð42Þ
where

M� ¼
M 0

0 I

" #
; K� ¼

C K

�I 0

" #
; Z ¼

’WW

W

( )
: ð43245Þ

An eigenvalue problem can be derived by assuming that Z is a harmonic matrix function
of t expressed as

Z ¼ eltY; ð46Þ
where l is the complex eigenvalue and Y is the complex mode shape. Substituting equation
(46) into equation (42) yields

lM�Yþ K�Y ¼ 0: ð47Þ
Note that equation (47) is not a symmetric eigenvalue problem.

3. NUMERICAL RESULTS AND DISCUSSION

In this section, numerical results are obtained by using the modal equations which are
derived in section 2. To solve the eigenvalues problem for the rotating composite plate,
assumed mode functions are employed. Five cantilever beam functions and seven free–free
beam functions which include two rigid body mode functions are employed to construct 35
plate mode functions (see reference [12] for more detailed procedure). The number of
mode functions are sufficient to insure adequate convergence for the lowest six
eigensolutions. To confirm the convergence and the accuracy, numerical results obtained
by using the present modelling method are compared to those by using ANSYS for a non-
rotating composite plate. The composite plate used in this example is made up of eight
laminae with the fiber orientations [0, 45, �45, 90]s, and the composite material is T300/
5208. The mechanical properties of the material are given in Table 1. It is shown in Table 2
that the lowest six natural frequencies of a square plate obtained by using the present
modelling method agree well with those obtained by using ANSYS. To obtain the finite
element solutions (ANSYS), 100 elements (element type is SHELL99) are employed to
divide the plate evenly.

Figure 5 shows the variations of the lowest six dimensionless natural frequencies of a
rotating square plate with fiber orientations [0, 45, �45, 90]s. The dimensionless hub
Table 1

Material properties of the composite plate

Material E1 (GPa) E2 (GPa) G12 (GPa) n12

T300/5208 181 10�3 7�17 0�28



Table 2

Comparison of natural frequencies of a square plate obtained by the present modelling and

ANSYS

Mode Present ANSYS Error (%)

1 1�0479 1�0422 0�55
2 1�9816 1�9567 1�27
3 4�6503 4�5453 2�31
4 6�6018 6�5249 1�18
5 8�0411 7�8710 2�16
6 10�0365 9�7834 2�58

Figure 5. Variations of the lowest six natural frequencies of a rotating square composite plate.
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radius ratio s is set to zero. It can be observed from the results that all the natural
frequencies increase as the angular speed increases. Interesting phenomena can be
observed from Figure 5. The fifth and the sixth eigenvalue loci veer around o ¼ 7 while
the fourth and fifth eigenvalue loci cross around o ¼ 9:

Figures 6(a) and 6(b) show the nodal lines of the lowest six modes of the plate when the
dimensionless angular speeds are 0 and 20. Comparing the mode shapes of the rotating
plate to those of the non-rotating plate, the fourth, the fifth, and the sixth mode shapes
seem to be switched with one another. These mode shape variations result from the
eigenvalue loci veering and crossing shown in Figure 5. These phenomena were well
explained in reference [13]. Although the laminates of the plate are symmetrically stacked
up with respect to neutral axis, nodal line patterns are found to be unsymmetric. The
reason for this comes from the D16 and D26 terms which represent the flexural–torsional
coupling effect in the matrix Dij of equation (7). This same phenomenon was also reported
in reference [14]. The flexural–torsional coupling effects, however, seem to be weakened as
the angular speed of the plate increases. In this case, as the angular speed increases, the
motion-induced stiffness variation terms of KGX1 and KGX2 become dominant so that the
structural stiffness terms of D16 and D26 become negligible.



Figure 6. Nodal line variations of the lowest six modes due to angular speed.
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In Figure 7, the influence of the coupling effect between the in-plane and the lateral
motions on the natural frequencies is investigated. The solid lines represent the results of
considering the coupling effect and the dotted lines represent the results of ignoring the
effect. When laminates are symmetrically staked up with respect to the neutral axis of the
plate, the results obtained by considering the coupling effect are almost identical to those
obtained by ignoring the coupling effect (as shown in Figure 7(a)). On the other hand,
Figure 7(b) shows the variations of the lowest six dimensionless natural frequencies of a
rotating plate with unsymmetrical fiber orientations [10, 20, 30, 40, 50, 60, 70, 80]. the
results obtained by ignoring the coupling effect. In this case, Bij which represents the
coupling stiffness matrix in equation (6) is not zero and influences the modal
characteristics of the rotating plate.

Lastly, the variations of dimensionless natural frequencies of a square plate for the fiber
orientations [0, y; �y; 90]s are shown in Figure 8. The effect of the fiber orientation angle y
is shown in the figure. Comparing Figures 8(a) and 8(b), one can find that the trends of the
first bending, the first torsion, and the first chordwise bending frequencies are not much
influenced by the angular speed while those of the second frequencies change significantly.
These figures also indicate that the natural frequencies of the bending modes decrease as



Figure 7. Variations of the lowest six natural frequencies of rotating composite plates with symmetrical and
unsymmetrical laminae.
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the fiber orientation angle increases. Those of the chordwise bending modes, however,
increase as the fiber orientation angle increase.

4. CONCLUSIONS

In this paper, a modelling method for the modal analysis of rotating composite plates is
presented. Using the proposed modelling method, the effects of the angular speed and the
fiber orientation angles on the modal characteristics are investigated. As the angular speed
increases, the natural frequencies increase. the natural frequency loci veering and the loci
crossing phenomena are also observed from the numerical results. Mode shape variations
which occur in the region of the veering and the crossing are also exhibited. When



Figure 8. Variations of the lowest six natural frequencies due to the fiber orientation angle change.
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laminates are unsymmetrically stacked up with respect to the mid-plane of the plate, the
coupling effects between the in-plane and the lateral motions should be considered to
obtain accurate analysis results. These results indicate that the modal characteristics of a
rotating composite plate can be controlled by changing its fiber orientation angles.
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